OMNICOMM

Датчики уровня топлива Omnicomm LLS 20160, LLS 20230, LLS-AF 20310

Руководство пользователя Omnicomm Configurator 5 27.12.2019

Содержание

Omnicomm LLS

Общая информация 3 Внимание 3 Технические характеристики 4 Электрические искробезопасные параметры Omnicomm LLS 20230 7 Подготовка 8 Подготовка бака 8 9 Подготовка датчика 10 Настройка Калибровка «Пустой/Полный» 13 Настройка датчиков Omnicomm LLS 20160 и LLS 20230 14 Настройка датчиков Omnicomm LLS-AF 20310 15 Установка и подключение 15 Особенности установки Omnicomm LLS 20230 на топливозаправщик 20 21 Тарирование Пломбирование 24 Приложение. Перечень оборудования для установки датчиков уровня топлива 26

Общая информация

Датчики уровня топлива Omnicomm LLS 20160, LLS 20230, LLS-AF 20310

Общая информация

Руководство пользователя приведено для датчиков уровня топлива Omnicomm LLS 20160, LLS 20230, LLS-AF 20310.

Omnicomm LLS 20160 – датчик уровня топлива с интерфейсами RS-232 и RS-485.

Omnicomm LLS 20230 – датчик уровня топлива во взрывобезопасном исполнении.

Omnicomm LLS-AF 20310 – датчик уровня топлива с аналоговым и частотным интерфейсами.

Внимание

При проведении монтажа необходимо соблюдать технику безопасности и требования нормативной документации для данного вида работ.

Минимальная длина обрезки измерительной части 150 мм.

Диэлектрическая проницаемость измеряемой среды должна быть постоянной. Не соблюдение данного требования приводит к увеличению погрешности измерения.

Технические характеристики

Технические характеристики

Характеристика	Значение		
	LLS 20160	LLS 20230	LLS-AF 20310
Степень защиты корпуса	IP57		
Режим работы	Продолжительн	ный	
Средний срок службы, лет	8		
Размер внутреннего фильтра	От 0 до 20		
Период измерения, с	1		
Габаритные размеры, мм	78×74×(27+длина измерительной части)		
Масса, кг	Не более 2		
Температура окружающей среды, °С	От -45 до +80		
Предельные температуры, °C	-60 и + 85		
Относительная влажность при температуре 25 °C (без конденсации влаги), %	От 5 до 95		
Атмосферное давление, кПа	От 84 до 107		
Предельная относительная влажность при температуре 25 °C (без конденсации влаги), %	100		

Технические характеристики

Характеристика	Значение		
	LLS 20160	LLS 20230	LLS-AF 20310
Основная приведённая погрешность измерений уровня, %	±1		
Диапазон измерения	0700, 1000, 1500, 2000, 2500, 3000	0700, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000	0700, 1000,1500
Напряжение питания, В	7 – 50	8,5 – 10,5	7 – 45
Потребляемая мощность, Вт	0,4		0,6
Электрическая прочность гальванической изоляции, В	2500	2500	-

Omnicomm LLS 20160, LLS 20230		
Характеристика	Значение	
Интерфейс выдачи измеренных значений	RS-232, RS-485	
Программируемая скорость передачи интерфейса, бит/с	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	
Диапазон изменения цифрового кода, соответствующего максимальному значению измеряемого уровня	14095	
Диапазон изменения цифрового кода, соответствующего минимальному значению измеряемого уровня	01023	

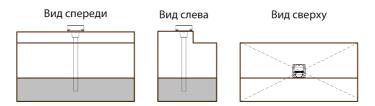
Технические характеристики

Omnicomm LLS 20160, LLS 20230		
Характеристика	Значение	
Диапазон измерения температуры, °С	От -55 до +80	
Абсолютная погрешность измерения температуры во всем диапазоне рабочих температур, °С	±2	

Omnicomm LLS-AF 20310	
Характеристика	Значение
Аналоговый выход:	
Диапазон выходных напряжений, В	020
Максимальное выходное напряжение, В	520
Минимальное выходное напряжение, В	015
Разрядность цифро-аналогового преобразования, бит	12
Сопротивление нагрузки на аналоговый выход, Ом	Не менее 2000
Пульсации выходного сигнала, %	Не более 0,15
Частотный выход:	
Модуляция выходного сигнала	Частотно- импульсная

Электрические искробезопасные параметры Omnicomm LLS 20230

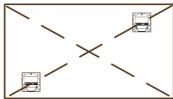
Omnicomm LLS-AF 20310	
Характеристика	Значение
Диапазон выходных частот, Гц	302000
Максимальная частота выходного сигнала, Гц	1002000
Минимальная частота выходного сигнала, Гц	301900
Максимальный ток нагрузки на частотном выходе в режиме «открытый коллектор», мА	300
Сопротивление внутренней «подтяжки» к плюсу напряжения питания, Ом	1500


Электрические искробезопасные параметры Omnicomm LLS 20230

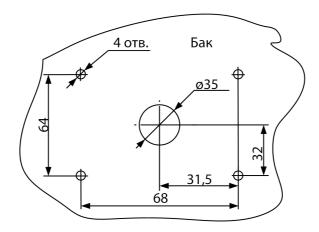
Параметры	Значение
Максимальное входное напряжение Ui, B	10,5
Максимальный входной ток Ii, A	0,45
Максимальная внутренняя емкость Сі, мкФ	10
Максимальная внутренняя индуктивность Li, мГн	0,5

Подготовка

Подготовка бака


- 1. Выберите место установки датчика Omnicomm LLS с учетом следующих требований:
- Место установки должно быть максимально приближено к геометрическому центру бака и являться самым глубоким местом в баке:

• Установленный датчик не должен касаться ребер жесткости и дополнительного оборудования внутри бака

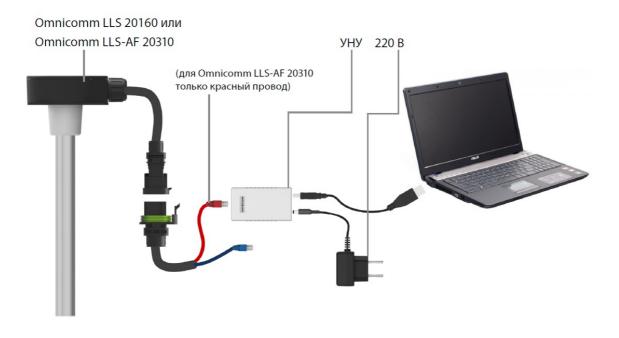

Установка двух датчиков в один топливный бак позволяет значительно уменьшить зависимость уровня топлива от угла наклона TC:

- 2. Для соблюдения техники безопасности произведите выпаривание бака
- 3. Просверлите центральное отверстие биметаллической коронкой ø35 мм
- 4. Просверлите четыре крепежных отверстия согласно схеме:

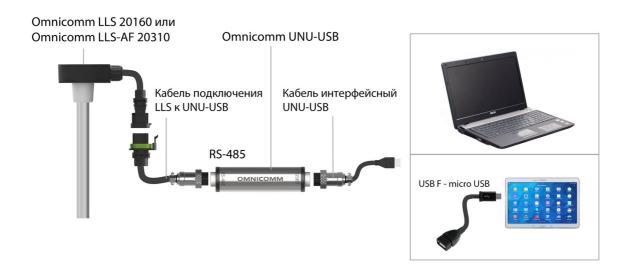
Подготовка

Диаметр крепежных отверстий выбирается в зависимости от материала бака:

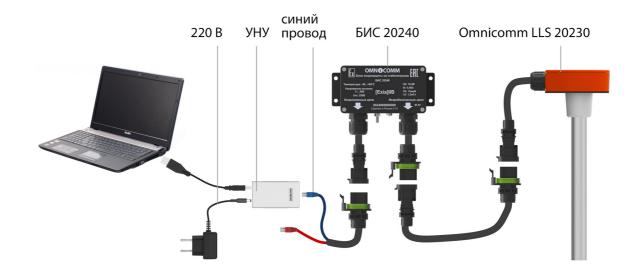
- Ø 4 мм для металлического бака с толщиной стенок более 3 мм (нарезать резьбу M5)
- Ø 7 мм для пластикового и металлического бака со стенками до 3 мм (под заклепки)
- Ø 4 мм для пластикового бака более 3 мм

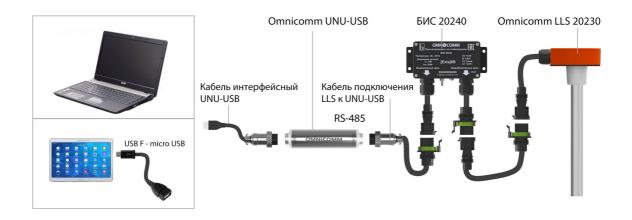

Подготовка датчика

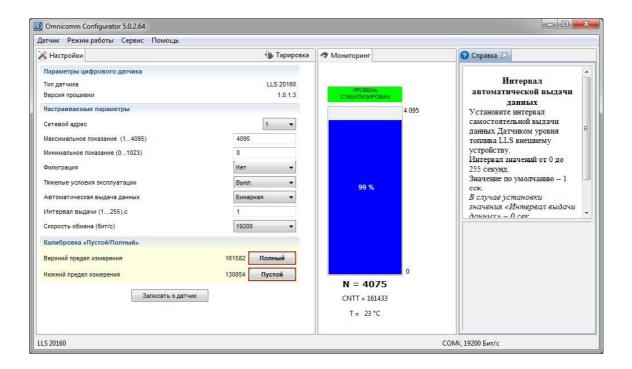
- 1. Измерьте глубину бака. Отрежьте измерительную часть датчика таким образом, чтобы ее длина была на 20 мм меньше глубины бака. Линия среза должна быть перпендикулярна продольной оси датчика
- Заполните маслобензостойким токонепроводящим герметиком изолирующий колпачок, входящий в комплект поставки, на 1/4 1/5 от объема.
 Рекомендуемые герметики: PERMATEX™ MotoSeal® Black, ABRO™ Black, ABRO™ Red
- 3. Наденьте изолирующий колпачок на центральный стержень датчика Omnicomm LLS


Настройка

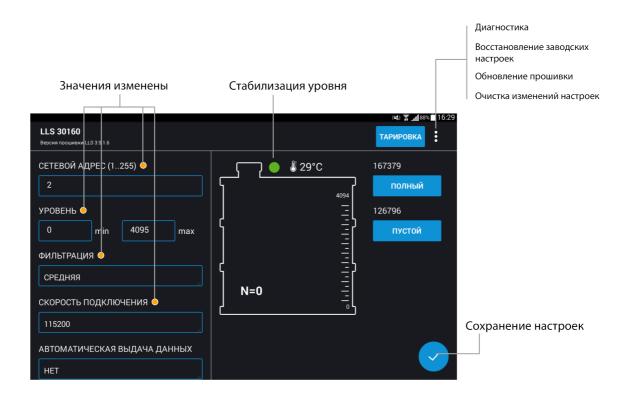
Подключите датчик к ПК или планшету.


Подключение датчиков Omnicomm LLS 20160 или Omnicomm LLS-AF 20310 производите согласно схеме:


или


Подключение датчиков Omnicomm LLS 20230 производите согласно схеме:

или


Запустите программу Omnicomm Configurator на ПК или планшете.
Omnicomm Configurator (PC):

В меню «Сервис» / «Настройки» / «Соединение» укажите порт и скорость подключения.

В разделе «Мониторинг» значение уровня топлива отображается без учета фильтрации.

Omnicomm Configurator (Android):

Калибровка «Пустой/Полный»

Настройку производите в том топливе, с которым данный датчик будет работать.

- 1. Залейте топливо в мерную ёмкость
- 2. Погрузите датчик в топливо на всю длину измерительной части
- 3. Дождитесь появления зеленого индикатора «Уровень стабилизирован». Во вкладке «Настройки» в разделе «Калибровка Пустой/Полный» нажмите кнопку «Полный», будет зафиксировано значение, соответствующее полному баку
- 4. Выньте датчик из емкости и дайте топливу стечь из измерительной части в течение 1 минуты. В разделе «Калибровка Пустой/Полный» нажмите кнопку «Пустой», будет зафиксировано значение, соответствующее пустому баку
- 5. Нажмите кнопку «Записать в датчик»

Hастройка датчиков Omnicomm LLS 20160 и LLS 20230

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

- «**Сетевой адрес**» (от 1 до 254) установите сетевой адрес датчика. При подключении нескольких датчиков к одному внешнему устройству, сетевые адреса должны быть уникальны.
- «**Максимальное показание**» (от 1 до 4095) выберите максимальное показание датчика. Значение по умолчанию 4095.
- «**Минимальное показание**» (от 0 до 1023) выберите минимальное показание датчика. Значение по умолчанию 0.
- «Фильтрация» установите параметры фильтрации выходного сигнала:
- «Нет» фильтрация не производится. Используется в случаях, когда фильтрация осуществляется внешним устройством
- «Минимальная» фильтрация используется в случаях установки изделия в стационарных топливохранилищах и малоподвижной технике
- «Средняя» фильтрация используется в случаях работы ТС в нормальных дорожных условиях
- «Максимальная» фильтрация используется в случаях работы ТС в тяжелых дорожных условиях

«Автоматическая выдача данных» – выберите:

- «Нет выдачи» самостоятельная выдача данных (без запроса) не производится
- «Бинарная» самостоятельная выдача данных в бинарном формате
- «Символьная» самостоятельная выдача данных в символьном формате
- «Интервал выдачи данных» (от 1 до 255 секунд) установите интервал самостоятельной выдачи данных
- «Режим тяжелых условий эксплуатации» включите для дополнительной фильтрации значений измерения, учитывающей сложные условия работы.
- «Скорость обмена» выберите скорость, на которой будет осуществляться обмен данными с внешним устройством. Значение по умолчанию 19200 бит/сек.

Настройка датчиков Omnicomm LLS-AF 20310

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

Значения **«Фильтрация»** и режим **«Тяжелых условий эксплуатации»** указываются аналогично датчикам Omnicomm LLS 20160, LLS 20230.

«Тип сигнала» – выберите «Аналоговый» или «Частотный».

Для аналогового сигнала:

- «Макс. знач. напряжения (5 ... 20) В» установите максимальное значение напряжения. Значение по умолчанию 5 В
- «Мин. знач. напряжения (0 ... 15) В» установите минимальное значение напряжения. Значение по умолчанию 0 В

Для частотного сигнала:

- «Макс. знач. частоты (100 до 2000) Гц» установите максимальное значение частоты. Значение по умолчанию 2000 Гц
- «Мин. знач. частоты (30 до 1900) Гц» установите минимальное значение частоты. Значение по умолчанию 30 Гц
- «Подтяжка» в случае если к входу внешнего устройства, по описанию производителя, подключается сигнал напряжения, выберите «Вкл». Если подключается сигнал типа «сухой контакт» или «транзисторный n-p-n ключ», выберите «Выкл»

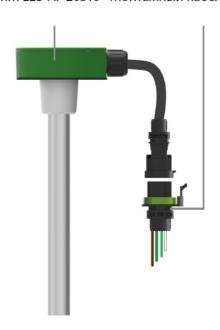
При подключении датчиков Omnicomm LLS-AF 20310 к Терминалам Omnicomm выберите частотный тип сигнала и установите максимальное и минимальное значение частоты – 1053 и 30 Гц соответственно.

Установка и подключение

При установке датчиков уровня топлива на пластиковые баки необходимо обеспечить надежное электрическое соединение проводом корпуса датчика с рамой ТС. Несоблюдение данного требования может привести к выходу из стоя датчика от воздействия статического электричества.

1. Наденьте на измерительную часть датчика Omnicomm LLS прокладку, входящую в комплект поставки

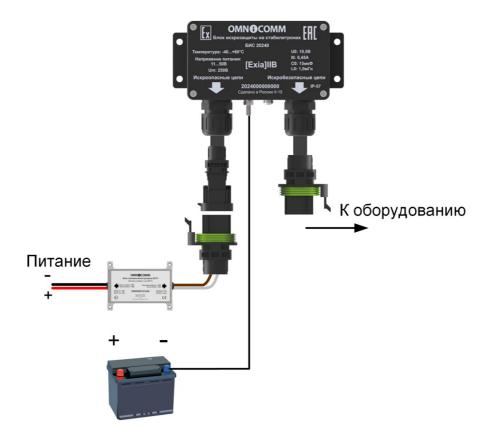
- 2. Установите датчик Omnicomm LLS в бак и закрепите:
- при креплении заклепками используйте клепальщик
- при креплении болтами, предварительно наденьте пломбу (на один болт), шайбу и гровер
- при креплении на пластиковые баки с толщиной стенок более 3 мм используйте саморезы и пломбу (на один саморез), входящие в комплект поставки
- 3. Подключите датчики Omnicomm LLS к внешнему устройству согласно схемам:


Датчики Omnicomm LLS 20160:

Omnicomm LLS 20160 Монтажный кабель

Датчики Omnicomm LLS-AF 20310:

Omnicomm LLS-AF 20310 Монтажный кабель


Датчики Omnicomm LLS 20230:

Электрически соедините корпус БИС 20240 с корпусом ТС или клеммой шины заземления (с заземленным элементом конструкции стационарного топлива хранилища) медным проводом с сечением не менее 4 мм².

Электрическое сопротивление проводника между корпусом БИС 20240 и корпусом транспортного средства или клеммой шины заземления не должно превышать 0,1 Ом.

При использовании блока гальванической развязки БР15 заземление Блока искрозащиты БИС 20240 производите согласно схеме:

Назначение проводов монтажного кабеля датчиков Omnicomm LLS 20230 и LLS 20160

Название сигнала	Цвет провода
RS-485 A	Оранжево-белый
RS-485 B	Бело-голубой
RS-232 Tx	Розовый
RS-232 Rx	Серый
+Uпит	Коричневый
Общий	Белый

Особенности установки Omnicomm LLS 20230 на топливозаправщик

Назначение проводов монтажного кабеля датчиков Omnicomm LLS-AF 20310

Название сигнала	Цвет провода
Аналогово-частотный выход	Зеленый
Плюс питания	Коричневый
Общий аналогового сигнала	Зелено-белый
Общий (минус) питания	Белый

- 4. Подключите держатель предохранителя к проводу питания датчика (коричневый провод) в непосредственной близости к цепи питания TC
- 5. Установите предохранитель в держатель предохранителя

При установке датчика уровня топлива Omnicomm LLS 20230 совместно с БИС 20240, установка предохранителя осуществляется в цепь питания БИС 20240.

Подключение нескольких датчиков Omnicomm LLS 20160 и LLS 20230 производится параллельно по интерфейсу RS-485.

Особенности установки Omnicomm LLS 20230 на топливозаправщик

Датчик уровня топлива LLS 20230 устанавливается на специальных видах техники или хранилищах, к которым предъявляются требования взрывозащиты оборудования, и имеет маркировку взрывозащиты «0ExialIBT6X».

Датчик уровня топлива Omnicomm LLS 20230 настраивается и эксплуатируется только совместно с блоком искрозащиты БИС 20240, производимым компанией Omnicomm. В случае подключения датчика к питанию TC до прерывателя массы, необходимо использовать блок гальванической развязки Omnicomm БР15.

При монтаже в топливные баки ТС датчиков с длиной измерительной части более

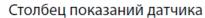
Тарирование

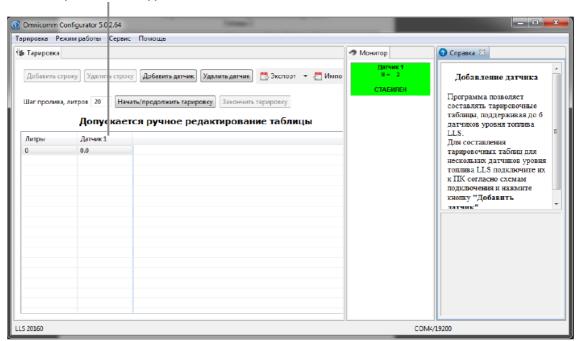
1,5 м, рекомендуется усиление измерительной части датчика с использованием стальных шпилек и хомутов или стальной арматуры соответственно:

Тарирование

Тарирование топливного бака необходимо для установки соответствия цифрового кода, выдаваемого датчиком Omnicomm LLS, и объема топлива в конкретном топливном баке.

Тарирование топливного бака представляет собой заправку топлива в бак – от пустого до полного, с определенным шагом заправки, и фиксацию показаний датчика Omnicomm LLS в тарировочной таблице.


Имеется возможность тарировки емкости методом слива.


Тарировка емкости с одним датчиком Omnicomm LLS:

- 1. Опустошите топливный бак
- 2. Подключите датчик Omnicomm LLS к ПК или планшету с помощью устройства настройки УНУ или USB-USB согласно схемам Настройка
- 3. Запустите программу Omnicomm Configurator на ПК или планшете. Выберите режим работы «Тарирование ёмкости»

Тарирование

Omnicomm Configurator (PC):



В случае если столбец показаний датчика не отображается, нажмите кнопку «Добавить датчик». Выберите тип датчика Omnicomm LLS. Для датчиков Omnicomm LLS 20160 и LLS 20230 укажите сетевой адрес, установленный в датчике при настройке

Тарирование

Omnicomm Configurator (Android):

В случае если при тарировке в Omnicomm Configurator (Android) отображаются не все подключенные датчики Omnicomm LLS 20160 или LLS 20230, выберите в меню «Обновить список устройств»:

5. Установите шаг пролива в литрах

Если геометрия бака не линейна и / или имеет расширения или сужения - для повышения точности, на таких участках баков рекомендуется делать тарировку с меньшим шагом, используя мерные ёмкости меньшего дозирования (большего разрешения).

- 6. Нажмите кнопку «Начать/продолжить тарировку»
- 7. Залейте объем топлива, равный шагу пролива

Заправку производите мерной емкостью или под контролем расходомера жидкости с заданным шагом. Емкость должна иметь метрологическую поверку.

8. Нажмите «Добавить строку»

Пломбирование

В столбце «Литры» отобразится объем заправки согласно установленному шагу пролива.

В столбце «Датчик» отобразится значение, соответствующее объему заправки.

- 9. Нажмите «Добавить строку»
- 10. Повторите выполнение пунктов 7, 8 и 9 согласно количеству контрольных точек. Рекомендуемое минимальное количество контрольных точек 20
- 11. Нажмите кнопку «Закончить тарировку»
- 12. Сохраните тарировочную таблицу в файл тарировки (.ctb)/ файл Omnicomm Online (.xml)/ в Терминал/ или в Индикатор, нажав кнопку «Экспорт»

При экспорте тарировочной таблицы в файл Omnicomm Online (xml), откроется окно «Экспорт». Укажите номер датчика Omnicomm LLS для отображения в Omnicomm Online.

Тарирование емкости с несколькими датчиками Omnicomm LLS 20160 или LLS 20230 производится аналогично тарировке с одним датчиком. Перед началом тарировки добавьте необходимое количество датчиков Omnicomm LLS и укажите сетевые адреса. Тарировка производится для всех датчиков одновременно. Подключение нескольких датчиков Omnicomm LLS к ПК производится с помощью разветвителя КТЗ.

Тарирование емкости с несколькими датчиками LLS-AF 20310 производится для каждого датчика отдельно. Для импорта в Omnicomm Online профиля TC с несколькими тарировочными таблицами LLS-AF 20310:

- 1. Проведите тарировку каждого датчика LLS-AF 20310
- 2. Экспортируйте тарировочные таблицы в файл Omnicomm Online (xml) для каждого датчика по отдельности При экспорте указывайте различные номера датчиков LLS-AF 20310, начиная с 1. Возможные варианты: от 1 до 4
- 3. Импортируйте тарировочные таблицы в терминал. Убедитесь, что в настройках терминала в разделе «Датчики уровня топлива», установлено нужное количество датчиков и выбран тип датчиков «LLS-AF»
- 4. Экспортируйте профиль ТС из терминала
- 5. Импортируйте профиль TC в Omnicomm Online

Пломбирование

Для датчиков Omnicomm LLS предусмотрено пломбирование болта или самореза:

Пломбирование

- 1. Установите болт или саморез через отверстие в пломбе
- 2. Защелкните крышку пломбы
- 3. Внесите в акт номера пломбы и крышки

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

Nο	Наименование	Количество
1	Коронка биметаллическая ø35 мм	1 шт.
2	Хвостовик к коронке	1 шт.
3	Сверло по металлу ø7 мм или ø4 мм	1 шт.
4	Ножовка по металлу	1 шт.
5	Ключ гаечный на 8 мм	1 шт.
6	Метчик M5 с держателем	1 шт.
7	Роторная пломба	2 шт.
8	Проволока пломбировочная ø0.7 мм	до 0,8 м.
9	Персональный компьютер	1 шт.
10	Программа Omnicomm Configurator	1 шт.
11	Устройство настройки Omnicomm UNU-USB (или УНУ)	1 шт.
12	Блок питания постоянного напряжения 10 – 15 В, 0.5 А	1 шт.
13	Мерная ёмкость	1 шт.

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

Nο	Наименование	Количество
14	Топливо	
15	Емкость для тарировки	1 шт.

OMNICOMM

info@omnicomm.ru www.omnicomm.ru